1 Definitions and Background

1. Define the following terms and give examples where appropriate.
 (a) lexeme:

 (b) token:

 (c) alphabet:

 (d) language over an alphabet:

 (e) regular language:

 (f) maximal munch rule:

 (g) lexical analyzer generator:

 (h) deterministic finite automaton:

 (i) nondeterministic finite automaton:

 (j) finite automaton acceptance:
2. What are the stages of an interpreter? What data types are passed between these stages?

3. What differences are there between a compiler and an interpreter?
2 Regular Languages and Regular Expressions

1. Write a regular expression to match each of the following.
 - An RGB color: three comma-separated integers enclosed in parentheses
 - A Java variable name: a sequence of lowercase letters, upper case letters, numbers and underscores that does not begin with a number.

2. How can a character class be represented using only single match (a), empty match (ε), concatenation (AB), union (A|B), and Kleene star (A*)?

3. Determine whether or not the following languages are regular. Explain why in one or two sentences.
 - L_1 is all strings over the alphabet { (,) } where the parentheses are balanced. For example, (())(()) ∈ L_1 but () ∉ L_1.

 - L_2 is all unique words that are printed in Programming Language Pragmatics by Michael L. Scott.

 - L_3 is all 10-digit numbers that are prime.

 - L_4 is the Ocaml language (as described in its reference manual). The alphabet is the set of all tokens and the language is the set of all valid Ocaml programs. L_4 is not regular; give two reasons why. Aside: This explains why we cannot use a lexer to parse languages like Cool or Ruby or C.
4. Consider the following DFA over the alphabet $\Sigma = \{a, b\}$.

![DFA Diagram]

Give a one-sentence description of the language recognized by the DFA. Write a regular expression for the same language.

3 Finite Automata

1. Consider the following languages over the alphabet $\Sigma = \{a, b\}$.
 - L_1: All strings that contain at least three a's.
 - L_2: All strings that contain at most one b.
 - L_3: All strings that contain at least three a's but at most one b.
 - L_4: All strings that contain no b's.

 Aside: This example illustrates that regular languages are closed under intersection. Note that $L_3 = L_1 \cap L_2$.

 (a) For each of the languages L_1, L_2, L_3 and L_4, give a regular expression.
(b) For each of the languages L_1, L_2, L_3 and L_4, give a nondeterministic finite automaton (NFA). (You should thus give four separate NFAs.)
(c) For each of the languages L_1, L_2, L_3 and L_4, give a deterministic finite automaton (DFA). (You should thus give four separate DFAs.)
2. Consider the following languages:

- \(L_1 \) is all strings over the alphabet \(\Sigma = \{x, y\} \) where either \(x \) occurs an odd number of times or \(y \) occurs an odd number of times (or both).

- \(L_2 \) is all strings over the alphabet \(\Sigma = \{x, y, z\} \) where either \(x \) occurs an odd number of times or \(y \) occurs an odd number of times or \(z \) occurs an odd number of times (or both, or all three).

Give a non-deterministic finite automaton (NFA) for the the languages \(L_1 \). Then give a separate NFA for \(L_2 \).

Aside: Non-deterministic finite automata are no more powerful than DFAs in terms of the languages they can describe. They can be exponentially more succinct than DFAs, however.