Earley States

- Let \(X \) be a non-terminal
- Let \(a \) and \(b \) be (possibly-empty) sequences of terminals and non-terminals
- Let \(X \rightarrow ab \) be a production in your grammar
- Let \(j \) be a position in the input
- Each Earley State is a tuple \(< X \rightarrow a \cdot b, j > \)
 - We are currently parsing an \(X \)
 - We have seen \(a \), we expect to see \(b \)
 - We started parsing this \(X \) after seeing the first \(j \) tokens from the input.

Formal shift operation

- Whenever
 - chart[i] contains \(< X \rightarrow ab \cdot cd, j > \)
 - \(c \) is a terminal (not a non-terminal)
 - the \((i+1)^{th} \) input token is \(c \)
- The shift operation
 - Adds \(< X \rightarrow abc \cdot d, j > \) to chart[i+1]

Formal closure operation

- Whenever
 - chart[i] contains \(< X \rightarrow ab \cdot cd, j > \)
 - \(c \) is a non-terminal
 - The grammar contains \(< c \rightarrow p \ q \ r > \)
- The closure operation
 - Adds \(< c \rightarrow p \ q \ r, i > \) to chart[i]

- Note \(< c \rightarrow p \ q \ r, i > \) because “we started parsing this \(c \) after seeing the first \(i \) tokens from the input.”

Formal reduce operation

- Whenever
 - chart[i] contains \(< X \rightarrow ab \cdot , j > \)
 - chart[j] contains \(< Y \rightarrow q \ X \ r, k > \)
- The reduce operation
 - Adds \(< Y \rightarrow q \ X \ r, k > \) to chart[i]

- Note \(< Y \rightarrow q \ X \ r, k > \) because “we started parsing this \(Y \) after seeing the first \(k \) tokens from the input.”
Massive Earley Example

Grammar
S → F
F → id (A)
A → N
A → ε
N → id
N → id , N

Input
id (id , id)

--- | --- | --- | --- | --- | --- | ---
S → F , 0

#58