How Not To Do Global Optimizations
A global optimization changes an entire method (consisting of multiple basic blocks).

We must be conservative and only apply global optimizations when they preserve the original semantics.

We use global data flow analyses to determine if it is OK to apply an optimization.

Flow analyses are built out of simple transfer functions and can work forwards or backwards.
Lecture Outline

- Global flow analysis
- Global constant propagation
- Liveness analysis
Local Optimization

Recall the simple basic-block optimizations

- Constant propagation
- Dead code elimination

X := 3
Y := Z * W
Q := X + Y

X := 3
Y := Z * W
Q := 3 + Y
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
\begin{align*}
X & := 3 \\
B & > 0 \\
Y & := Z + W \\
Y & := 0 \\
A & := 2 \times X
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[X := 3 \]

\[B > 0 \]

\[Y := Z + W \]

\[A := 2 \times X \]

\[Y := 0 \]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
X := 3
\]

\[
B > 0
\]

\[
Y := Z + W
\]

\[
A := 2 \times 3
\]

\[
Y := 0
\]
Correctness

• How do we know it is OK to globally propagate constants?

• There are situations where it is incorrect:

\[X := 3 \]
\[Y := Z + W \]
\[B > 0 \]
\[X := 4 \]
\[Y := 0 \]
\[A := 2 \times X \]
Correctness (Cont.)

To replace a use of x by a constant k we must know this **correctness condition**:

On every path to the use of x, the last assignment to x is $x := k$

Test:

1. What important event took place on December 16, 1773?

I do not believe in linear time. There is no past and future. All is one, and existence in the temporal sense is illusory. This question, therefore, is meaningless and impossible to answer.

When in doubt, deny all terms and definitions.
Example 1 Revisited

\[X := 3 \]

\[B > 0 \]

\[Y := Z + W \]

\[Y := 0 \]

\[A := 2 \times X \]
Example 2 Revisited

$X := 3$

$Y := Z + W$

$X := 4$

$A := 2 \times X$

$B > 0$

$Y := 0$
Discussion

• The correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of conditionals

• Checking the condition requires **global analysis**
 - Global = an analysis of the entire control-flow graph for *one* method body
Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property P at a particular point in program execution
- Proving P at any point requires knowledge of the entire method body
- Property P is typically undecidable!
Undecidability of Program Properties

- **Rice’s Theorem**: Most interesting dynamic properties of a program are undecidable:
 - Does the program halt on all (some) inputs?
 - This is called the **halting problem**
 - Is the result of a function F always positive?
 - Assume we can answer this question precisely
 - Oops: We can now solve the halting problem.
 - Take function H and find out if it halts by testing function $F(x) = \{ H(x); \text{return 1; } \}$ to see if it has a positive result
 - Contradiction!

- Syntactic properties are decidable!
 - e.g., How many occurrences of “x” are there?
- Programs without looping are also decidable!
Conservative Program Analyses

• So, we cannot tell for sure that “x” is always 3
 - Then, how can we apply constant propagation?

• It is OK to be conservative.
Conservative Program Analyses

- So, we cannot tell for sure that “x” is always 3
 - Then, how can we apply constant propagation?
- It is OK to be conservative. If the optimization requires P to be true, then want to know either
 - P is definitely true
 - Don’t know if P is true
- Let's call this *truthiness*
Conservative Program Analyses

• So, we cannot tell for sure that “x” is always 3
 - Then, how can we apply constant propagation?
• It is OK to be conservative. If the optimization requires \(P \) to be true, then want to know either
 - \(P \) is definitely true
 - Don’t know if \(P \) is true
• It is always correct to say “don’t know”
 - We try to say don’t know as rarely as possible
• All program analyses are conservative
Global Optimization: Review

X := 3
B > 0

Y := Z + W
Y := 0

A := 2 * X
Global Optimization: Review

1. $X := 3$
2. $B > 0$
3. $Y := Z + W$
4. $Y := 0$
5. $A := 2 \times 3$
6. $X := 4$
7. $A := 2 \times X$
Global Optimization: Review

- To replace a use of x by a constant k we must know that:

 *On every path to the use of x, the last assignment to x is $x := k$ **
Review

- The correctness condition is hard to check
- Checking it requires *global* analysis
 - An analysis of the entire control-flow graph for one method body
- We said that was impossible, right?
Global Analysis

• **Global dataflow analysis** is a standard technique for solving problems with these characteristics

• Global constant propagation is one example of an optimization that requires global dataflow analysis
Global Constant Propagation

- Global constant propagation can be performed at any point where \(** \) holds
- Consider the case of computing \(** \) for a single variable \(X \) at all program points
- Valid points cannot hide!
- We will find you!
 - (sometimes)
Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with X at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>This statement is not reachable</td>
</tr>
<tr>
<td>c</td>
<td>$X = \text{constant } c$</td>
</tr>
<tr>
<td>*</td>
<td>Don’t know if X is a constant</td>
</tr>
</tbody>
</table>
Example

Get out a piece of paper. Let's fill in these blanks now.

Recall: # = not reachable, c = constant, * = don't know.
Example Answers

\[X := 3\]
\[B > 0\]
\[Y := Z + W\]
\[X := 4\]
\[A := 2 \times X\]
\[X := *\]
Using the Information

• Given global constant information, it is easy to perform the optimization
 - Simply inspect the $x = ?$ associated with a statement using x
 - If x is constant at that point replace that use of x by the constant

• But how do we compute the properties $x = ?$
The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
Explanation

• The idea is to “push” or “transfer” information from one statement to the next.

• For each statement s, we compute information about the value of x immediately before and after s

 \[
 C_{\text{in}}(x,s) = \text{value of } x \text{ before } s
 \]

 \[
 C_{\text{out}}(x,s) = \text{value of } x \text{ after } s
 \]
Transfer Functions

• Define a *transfer function* that transfers information from one statement to another
Real-World Languages

- The official language of Sri Lanka and Singapore is spoken by over 66 million boasts a rich literature stretching back over 2000 years. Unlike most Indian languages, it does not distinguish between aspirated and unaspirated consonants. It uses suffices to mark number, case and verb tense and uses a flexible S-O-V ordering. It uses *postpositions* rather than prepositions.
 - Example: ஓதுதலிகளைக்கோண்டு
Real-World Computer Languages

• In January 1999, Anders Hejlsberg formed a team to design a new language called Cool, a “C-like Object Oriented Language”. It was renamed to avoid trademarks and became a this, and was “intended to be a simple, modern, general-purpose, object-oriented programming language.” It supports strong type checking, array bounds checking, garbage collection, components, portability, internationalization, and functional programming.
Fictional Magicians

• In Greek Mythology, this sorceress transforms her enemies into animals. In Homer's *Odyssey* she tangles with Odysseus (who defeats her magic); she ultimately suggests that he travel between Scylla and Charybdis to reach Ithaca.
Rule 1

\[C_{\text{out}}(x, s) = \# \quad \text{if} \quad C_{\text{in}}(x, s) = \# \]

Recall: \# = “unreachable code”
Rule 2

\[C_{\text{out}}(x, x := c) = c \quad \text{if } c \text{ is a constant} \]
Rule 3

\[C_{\text{out}}(x, x := f(...)) = * \]

This is a conservative approximation! It might be possible to figure out that \(f(...) \) always returns 5, but we won't even try!
Rule 4

\[C_{\text{out}}(x, y := ...) = C_{\text{in}}(x, y := ...) \text{ if } x \neq y \]
The Other Half

• Rules 1-4 relate the *in* of a statement to the *out* of the same statement
 - they propagate information across statements

• Now we need rules relating the *out* of one statement to the *in* of the successor statement
 - to propagate information *forward* across CFG edges

• In the following rules, let statement s have immediate predecessor statements p_1, \ldots, p_n
Rule 5

if $C_{\text{out}}(x, p_i) = *$ for some i, then $C_{\text{in}}(x, s) = *$
Rule 6

if $C_{\text{out}}(x, p_i) = c$ and $C_{\text{out}}(x, p_j) = d$ and $d \neq c$
then $C_{\text{in}}(x, s) = *$
if $C_{\text{out}}(x, p_i) = c$ or # for all i,
then $C_{\text{in}}(x, s) = c$
Rule 8

if \(C_{\text{out}}(x, p_i) = \# \) for all \(i \),
then \(C_{\text{in}}(x, s) = \# \)
An Algorithm

- For every entry s to the program, set $C_{in}(x, s) = *$

- Set $C_{in}(x, s) = C_{out}(x, s) = \#$ everywhere else

- **Repeat** until all points satisfy 1-8:
 Pick s not satisfying 1-8 and update using the appropriate rule
The Value #

• To understand why we need #, look at a loop

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
A &:= 2 \times X \\
A &< B \\
Y &:= 0 \\
X &:= * \\
X &:= 3
\end{align*}
\]
The Value #

• To understand why we need #, look at a loop

```
X := 3  # Initial value of X
B > 0   # Condition B

Y := Z + W
Y := 0  # Initial value of Y

A := 2 * X
A < B   # Condition A

X = *   # Result of the loop
X = 3   # Result of the loop
```

```
X = 3

Y := Z + W
Y := 0

A := 2 * X
A < B

X = *
X = 3
```

```
X = 3

Y := Z + W
Y := 0

A := 2 * X
A < B

X = *
X = 3
```

```
X = **

Y := Z + W
Y := 0

A := 2 * X
A < B

X = *
X = 3
```

```
X = **

Y := Z + W
Y := 0

A := 2 * X
A < B

X = *
X = 3
```
The Value # (Cont.)

- Because of cycles, all points must have values at all times during the analysis.

- Intuitively, assigning some initial value allows the analysis to break cycles.

- The initial value # means “so far as we know, control never reaches this point.”
Sometimes all paths lead to the same place.

Thus you need #.
Example

We are done when all rules are satisfied!
Another Example

Let's do it on paper!

\[X := 3\]
\[B > 0\]
\[Y := Z + W\]
\[Y := 0\]
\[A := 2 \times X\]
\[X := 4\]
\[A < B\]
Another Example: Answer

X := 3
B > 0

Y := Z + W

Y := 0

A := 2 * X
X := 4
A < B

X = *
X = # 3

X = # 3

X = # 3

X = # 3

X = # 3

X = # 4

Must continue until all rules are satisfied!
Orderings

- We can simplify the presentation of the analysis by ordering the values
 \[# < c < * \]

Drawing a picture with “lower” values drawn lower, we get

I am called a lattice!
Orderings (Cont.)

- * is the greatest value, # is the least
 - All constants are in between and incomparable

- Let lub be the least-upper bound in this ordering

- Rules 5-8 can be written using lub:
 \[C_{in}(x, s) = lub \{ C_{out}(x, p) \mid p \text{ is a predecessor of } s \} \]
Termination

- Simply saying “repeat until nothing changes” doesn’t guarantee that eventually nothing changes

- The use of lub explains why the algorithm terminates
 - Values start as # and only increase
 - # can change to a constant, and a constant to *
 - Thus, $C(x, s)$ can change at most twice
Number Crunching

The algorithm is polynomial in program size:

Number of steps =
Number of $C_\text{(....)}$ values changed * 2 =
(Number of program statements)2 * 2
Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, $X:=3$ is dead (assuming this is the entire CFG)
Live and Dead

- The first value of x is **dead** (never used)

- The second value of x is **live** (may be used)

- Liveness is an important concept

- Compilers for credit: you **must** do it for PA7 (plus more ...)

\[
\begin{align*}
X &:= 3 \\
X &:= 4 \\
Y &:= X
\end{align*}
\]
Liveness

A variable \(x \) is live at statement \(s \) if

- There exists a statement \(s' \) that uses \(x \)
- There is a path from \(s \) to \(s' \)
- That path has no intervening assignment to \(x \)
Global Dead Code Elimination

• A statement $x := \ldots$ is dead code if x is dead after the assignment
• Dead code can be deleted from the program
• But we need liveness information first . . .
Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in constant propagation.

- Liveness is simpler than constant propagation, since it is a boolean property (true or false).
Liveness Rule 1

$L_{in}(x, s) = \text{true}$ if s refers to x on the rhs
Liveness Rule 2

\[L_{in}(x, x := e) = false \quad \text{if } e \text{ does not refer to } x \]
Liveness Rule 3

\[L_{\text{in}}(x, s) = L_{\text{out}}(x, s) \] if \(s \) does not refer to \(x \)
Liveness Rule 4

\[L_{out}(x, p) = \lor \{ L_{in}(x, s) \mid s \text{ a successor of } p \} \]
Algorithm

• Let all $L(...) = \text{false}$ initially

• Repeat process until all statements s satisfy rules 1-4:

 Pick s where one of 1-4 does not hold and update using the appropriate rule
Liveness Example

- $X := 3$
- $B > 0$
- $Y := Z + W$
- $Y := 0$
- $X := X \times X$
- $X := 4$
- $A < B$

$L(X) = false$ for each statement.
Liveness Example Answers

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
Y &:= 0 \\
X &:= X \times X \\
X &:= 4 \\
A &< B
\end{align*}
\]

Dead code
Liveness Example Answers

Also dead code?

Dead code

$L(X) = \text{false}$

$L(X) = \text{true}$

Also dead code?
Termination

• A value can change from false to true, but not the other way around

• Each value can change only once, so termination is guaranteed

• Once the analysis is computed, it is simple to eliminate dead code
Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a \textit{forwards} analysis: information is pushed from inputs to outputs

Liveness is a \textit{backwards} analysis: information is pushed from outputs back towards inputs
Analysis Analysis

• There are many other global flow analyses
 - *Analysis Example: Optimization Enabled*
 - Available expressions: Common subexpression elimination
 - Live variables: Dead code elimination
 - Reaching definitions: Loop invariant code motion
 - Definite assignment: Null check elimination

• Most can be classified as either forward or backward

• Most also follow the methodology of local rules relating information between adjacent program points
Homework

- RS6 Recommended for Thursday
- CA4 Due Thursday