Lexical Analysis

Finite Automata

(Part 2 of 2)
Cunning Plan

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
One-Slide Summary

- **Finite automata** are formal models of computation that can accept regular languages corresponding to regular expressions.

- **Nondeterministic** finite automata (NFA) feature epsilon transitions and multiple outgoing edges for the same input symbol.

- Regular expressions can be converted to NFAs.

- Tools will generate DFA-based lexer code for you from regular expressions.
Finite Automata

• Regular expressions = specification
• Finite automata = implementation

• A finite automaton consists of
 - An input alphabet \(\Sigma \)
 - A set of states \(S \)
 - A start state \(n \)
 - A set of accepting states \(F \subseteq S \)
 - A set of transitions \(\text{state} \rightarrow \text{input} \text{ state} \)
Finite Automata

• Transition

\[s_1 \rightarrow^a s_2 \]

• Is read

In state \(s_1 \) on input “a” go to state \(s_2 \)

• If end of input
 - If in accepting state \(\Rightarrow \) accept
 - Otherwise \(\Rightarrow \) reject

• If still input, no transitions possible \(\Rightarrow \) reject
Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition

You can hand-write on any Exam or RS.
A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state
Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet $\Sigma = \{0, 1\}$

Check that “1110” is accepted but “110…” is not
And Another Example

- Alphabet $\Sigma = \{0, 1\}$
- What language does this recognize?
And A Fourth Example

- Alphabet still $\Sigma = \{ 0, 1 \}$

- The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

• Another kind of transition: ε-moves

• Machine can move from state A to state B without reading input
Deterministic and Nondeterministic Automata

- **Deterministic Finite Automata (DFA)**
 - One transition per input per state
 - No ε-moves

- **Nondeterministic Finite Automata (NFA)**
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

- Finite automata have finite memory
 - Need only to encode the current state
Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input

- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

• An NFA can get into multiple states

Input: 1 0 1

Rule: NFA accepts if it can get in a final state
NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
 - They have the same expressive power

- DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)

• For a given language the NFA can be simpler than the DFA

• DFA can be \textit{exponentially} larger than NFA
Natural Languages

• This North Germanic language is generally mutually intelligible with Norwegian and Danish, and descends from Old Norse of the Viking Era to a modern speaking population of about 10 million people. The language contains two genders, nouns that are rarely inflected, and a typical subject-verb-object ordering. Its home country is one of the largest music exporters of the modern world, often targeting English-speaking audiences. Bands such as Ace of Base, ABBA and Roxette are examples, with over 420m combined album sales.
Unnatural Languages

- This stack-based structured computer programming language appeared in the 1970's and went on to influence PostScript and RPL. It is typeless and is often used in bootloaders and embedded applications. Example:

 \[25 \times 10 + 50 +\]

- Simple C Program:

  ```c
  int floor5(int v) { return (v < 6) ? 5 : (v - 1); }
  ```

- Same program in this Language:

  ```plaintext
  : FLOOR5 ( n -- n' ) DUP 6 < IF DROP 5 ELSE 1 - THEN ;
  ```
Regular Expressions to Finite Automata

• High-level sketch

NFA

Regular expressions

Lexical Specification

DFA

Table-driven Implementation of DFA
Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

• For ε

• For input a
Regular Expressions to NFA (2)

- For AB

- For $A \mid B$
Regular Expressions to NFA (3)

- For A^*

![Diagram showing an NFA for A^* with.epsilon transitions and a loop on state 'A'.]
Example of RegExp -> NFA Conversion

- Consider the regular expression
 \[(1 \mid 0)^* 1\]
- The NFA is
Overarching Plan

- Regular expressions
- Lexical Specification
- Table-driven Implementation of DFA
- NFA
- DFA
NFA to DFA: The Trick

- Simulate the NFA
- Each state of DFA
 - = a non-empty \textit{subset of states} of the NFA
- Start state
 - = the set of NFA states reachable through \(\varepsilon\)-moves from NFA start state
- Add a transition \(S \rightarrow^a S'\) to DFA iff
 - \(S'\) is the set of NFA states reachable from the states in \(S\) after seeing the input \(a\)
 - considering \(\varepsilon\)-moves as well
NFA → DFA Example
NFA → DFA Example
NFA \rightarrow DFA Example

![Diagram of NFA and DFA example]
NFA \rightarrow DFA Example

Diagram of the NFA and DFA transitions.
NFA \rightarrow DFA: Remark

- An NFA may be in many states at any time

- How many different states?

- If there are N states, the NFA must be in some subset of those N states

- How many non-empty subsets are there?
 - $2^N - 1 =$ finitely many
Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $S_i \rightarrow^a S_k$ define $T[i,a] = k$

- DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Implementation (Cont.)

• NFA \rightarrow DFA conversion is at the heart of tools such as flex or ocamllex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations
PA2: Lexical Analysis

• Correctness is job #1.
 - And job #2 and #3!

• Tips on building large systems:
 - Keep it simple
 - Design systems that can be tested
 - Don’t optimize prematurely
 - It is easier to modify a working system than to get a system working
Lexical Analyzer Generator

- Tools like *lex* and *flex* and *ocamllex* will build lexers for you!
- You must use such a tool for PA2

I’ll explain ocamllex; others are similar
- See PA2 documentation
Ocamllex “lexer.mll” file

{
 (* raw preamble code
 type declarations, utility functions, etc. *)
}

let re_name_i = re_i

rule normal_tokens = parse
 re_1 { token_1 }
| re_2 { token_2 }
| re_n { token_n }

and special_tokens = parse
| re_n { token_n }
Example “lexer.mll”

```ocaml
{
  type token = Tok_Integer of int (* 123 *)
  | Tok_Divide (* / *)
}
let digit = ['0' - '9']
rule initial = parse
  '/'{ Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in
  let token_val = int_of_string token_string in
  Tok_Integer(token_val) }
| _{ Printf.printf "Error!\n"; exit 1 }
```
Adding Winged Comments

```ocaml
defining token =
  | Tok_Integer of int (* 123 *)
  | Tok_Divide (* / *)

let digit = ['0' - '9']
rule initial = parse
  "//" { eol_comment }
| '/' { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in
  let token_val = int_of_string token_string in
  Tok_Integer(token_val) }
| _ { Printf.printf "Error!\n"; exit 1 }

and eol_comment = parse
  '\n' { initial lexbuf }
| _ { eol_comment lexbuf }
```
Using Lexical Analyzer Generators

$ ocamllex lexer.mll
45 states, 1083 transitions, table size 4602 bytes

(* your main.ml file ... *)
let file_input = open_in "file.cl" in
let lexbuf = Lexing.from_channel file_input in
let token = Lexer.initial lexbuf in
match token with
| Tok_Divide -> printf "Divide Token!\n"
| Tok_Integer(x) -> printf "Integer Token = %d\n" x
How Big Is PA2?

• The reference “lexer.mll” file is 88 lines
 - Perhaps another 20 lines to keep track of input line numbers
 - Perhaps another 20 lines to open the file and get a list of tokens
 - Then 65 lines to serialize the output
 - I’m sure it’s possible to be smaller!

• Conclusion:
 - This isn’t a code slog, it’s about careful forethought and precision.
Legacy Warning!

- Legacy students may be tempted to use OCaml for PA2.
- However, Legacy students should save OCaml for one of the harder assignments later.
- Normal LDI: OCaml is a great choice.
Test Yourself! Exam Practice.

- Are practical parsers and scanners based on deterministic or non-deterministic automata?
- How can regular expressions be used to specify nested constructs?
- How is a two-dimensional transition table used in table-driven scanning?
Homework

• Textbook Reading, CD Reading - 2.4
• On-Line: Udacity 262 Lesson 2

• PA2 due Tuesday
• RS1 recommended Tuesday